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In-Plane Free Vibration Analysis of Curved Timoshenko 
Beams by the Pseudospectral Method 
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The pseudospectral  rnethod is applied to the analysis of  in-p lane  free vibrat ion of  circularly 

curved T imoshenko  beams. The analysis is based on the Chebyshev polynomials  and the basis 

functions are chosen to satisfy the boundary condit ions.  Natural  frequencies are calculated lbr 

curved beams of  rectangular and circular cross sections under hinged-hinged,  c lamped-c lamped  

and h inged-c lamped end condi t ions  and the results are compared with those by transfer matrix 

method. The present method gives good accuracy with only a limited number of  col locat ion 

points. 
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I. Introduction 

Curved beams are frequently used in many 

practical applications.  Because o1" their impor-  

tance the free vibrat ion analysis of  curved beams 

has been extensively studied and new methods 

have been proposed as can be found in the review 

articles (Markus and Nanasi ,  1981: Laura and 

Maurizi ,  1987 ; Ch idamparam and Leissa, 1993). 

Al though there exists a vast amount  of  research 

on the free vibration analysis of  curved beams, 

most o f  the work has been done on the basis of  

the Bernoul l i -Euler  beam theory. Real beams 

may have appreciable thickness where the shear 

deformation and the rotary inertia are not negli- 

gible as assumed in the classical beam theory. As 

a restth the T imoshenko  beam model has gained 

more popularity.  

Free vibrat ion analysis of  curved beams based 

on the T imoshenko  theory has been carried out 

using various methods such as the transli~r matrix 

method (Bickford and Strom, 1975; lrie et al., 

1982: Irie et al., 1983: Yildirim, 1997), the dy- 

namic stiffness method (Issa et al., 1987 ; Howson 

et al., 1995: Tseng et al., 1997: Howson and 

Jemah, 1999). tile differential quadrature  method 
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(Kang et al., 1995) and the finite element method 

(Davis et al., 1972; Prathap and Babu, 1986; 

Heppler, 1992 : Lee and Sin, 1994 ; Yang and Sin, 

1995). In this study a free vibration analysis for 

the in-plane mode of curved Timoshenko beams 

using the pseudospectral method is presented. The 

pseudospectral method can be considered as a 

spectral method that performs a collocation pro- 

cess, which can be made as spatially accurate as 

desired through exponential rate of convergence 

with mesh refinement. 

The pseudospectral method, however, remains 

largely unnoticed by the structural analysis com- 

munity and tbe application of the pseudospectral 

method to the vibration analysis is scarce. The 

pseudospectral method was applied to the free 

vibration analyses of  axisymmetric Mindlin plate 

(Soni and Amba-Rao ,  1975) and axisymmetric 

annular Mindlin plate (Gupta and Lal. 1985). 

The collocation method along with the power 

series representation was also used in the eigen- 

value analysis of  rectangular Mindlin plates 

(Mikami and Yoshimura, 1984). Recently, the 

pseudospectral method was applied to the eigen- 

value problems of straight Timoshenko beams 

and axisymmetric Mindlin plates (Lee and 

Schultz) and rectangular Mindlin plates (Lee, 

2003). 

2. Pseudospectral Formulations 

Fig. 1 depicts the geometric configuration of 

the title problem and the dependent variables. 

The slenderness ratio & of the curved beam is 

defined by 

Fig. 1 Geometry of curved beam and generalized 
displacements 

Fig. 2 

i ~  c~ N+°IN 
ii',¢+do 

Stress resultants acting on an infinitesimal 
element 

The stress resultants M, N and Q in (2) are 

defined by 

E1 3g r 
M 

R 30 

/ I 3V U fir\ Q = K A G  k ~ - ~ O - + N -  } 

(3) 

Assuming the simple harmonic motions in time 

sl = ~/AR2/I  (1) 

Fig. 2 shows the schematics of stress resultants. 

The equations of motion for the in-plane modes 

are given as follows 

l ON Q o~U 
R 30 R - P A 3 t  2 

i 3Q ~_N_=o A i~V  
R 30 . .  3t 2 (2) 

l 3M R Q - p I  3zgr 
R 30 3t 2 

U(O, t) = u ( 0 ) c o s  wt 
V(O, t ) = v ( 0 ) c o s  cot 

grC0. t) = 0 ( 0 ) c o s  wt 

(4) 

the substitution of (3) into (2) yields 

EA dau xAG EA+~AG dv ~ ~ G  #=_ojZoAu 
R2 dO 2 R2 u R 2 dO - -  

EA+xAG du ~G d2v EA xAG dO_ w2pAv(5) 
R 2 dO~ R ~ - d O  2 R2 v R dO 

KAG xAG dr_ EI d2(r A~.  2 . .  
R u * R - d 0 * - ~  d0 ~-x~'~=-~° Ot~ 
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When the range of the independent variable is 

given by ( 0 ~ 0 < O )  it is convenient to use the 

normalized variable 

~ = 2 0 - - 0  
~ - ~ [ - - 1 ,  1] (6) 

and (5) can be rewritten as 

4EA rdtG 2(EA-r, AG~ ~ _  
RaOa u"-~i-u RaO t,'+ ¢'=- o.?Mu 
2(EA+xAG~ ,. 4~AG ,, EA 2~:AG ¢/=-~dMv(7) 

xAG u+ 2~_~ , 4EI, 
R t ±R~ ~ ¢"-r~GO=-wZpl(~ 

where ' stands for the differentiation with respect 

to ~. The series expansions of the exact solutions 

u ( ~ ) ,  v(~)  and 10(~) have infinite numbers of 

terms. In this study, however, the dependent 

variables are approximated by the K - t h  partial 

sums as follows: 

K 

k = l  

K 

v(8) ~ ( ~ ) =  Y. c.C~(8) 
k = l  

K 

10($) -~ ~($) = Z &D.($) 
k = l  

(8) 

The end conditions considered in this study are 

clamped-clamped, hinged-hinged, and clamped- 

hinged boundary conditions. The boundary con- 

ditions for the in-plane mode are given by 

hinged support ' u = 0 .  v=O, M = 0  
clamped support"  u = 0 ,  v=O, 10=0 (9) 

The basis functions 

Bz.(~)  = C2.(~) = T2.+t (~) - Tt(~) 
( n = l ,  2, ...) 

(m) 

satisfy the boundary conditions u = 0  and v = 0  at 

~ = ±  1. The basis function Dj,(~ e) is required to 

satisfy either ~ = 0  or ,~ '=0 at the ends, and it is 
assumed 

Dz,-~ (~) = T2,(~ e) - T0(~) + a ~ a +  az~ 
Da,(~ e) = T2,+x (~ e) - Tj(~e) + aa~Z+ a4~ 

( n = l , 2 , ' " )  

(ll) 

The calculation of constants ax, az, aa and a4 

that satisfy each of clamped-clamped (10=0 at 

~=---+1), hinged-hinged ( ~ ' = 0  at ~=-----1), and 

clamped-hinged (10=0 at ~ = - - 1  and 10'=0 at 

~ = 1 )  boundary conditions is given in APPEN- 

DIX. By substituting (8) into (7) and by setting 

the residuals equal to zero at the collocation 

points 

(2 i - -1)  ~r 
~ ; = - c o s  2 / (  , ( i = 1 ,  .-,, K)  (12) 

the pseudospectral algebraic system of equations 

for the in-plane mode is given by 

rL (4EA _,,~ rAG ~ , I 2.EA+~4G, C;~e? ' 
~=lL0,1R-~.t~,,¢, ---g-•,cw,,,t-c. RZO 

+d, ~ -  D,(~.) i=-w2~ pAb~B,i~; 

~. . 2(EA-r.AG) I 4rAG EA , ~=,.o~ ~-~ B',',&+cq R-~-Ca',L;-~-C,.¢,. } 
~rAr ~ K 

K ~  j k=l 

4EI~ ...... I" "̂ -rAGD, +d,l~v~ = dzl~D,,2,., 

i i=l ,  " .  K' 

13) 

The total number of pseudospectral coefficients 

bb "", bt~, cb ""cK, dx, "", dK is 3K, which 

matches the total number of equations in (13), 

and (13) is solved for the eigenvalues of the in- 

plane modes. 

3. Numer ica l  Examples  

A preliminary test is run to check the conver- 
gence of the pseudospectral method applied to 

the in-plane free vibration analysis of curved 

Timoshenko beams. The eigenvalues of circular- 

ly curved beam of circular cross section with 

clamped-clamped boundary condition for the 

slenderness ratio s t =  100 are computed for differ- 
ent collocation number K,  and the computed 

results are listed in Table I. This shows the rapid 

convergence nature of the pseudospectral method 
such that the convergence of lowest 4 eigenvalues 
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Table 1 Convergence test of nondimensinalized frequency parameters ,~i (st=100, 6)=120, circular cross 

section, clamped-clamped boundary condition) 

Vibration 
g = 7  K =  10 at( = 15 K = 2 0  K = 2 5  K = 3 0  

mode 

1 11.910 11.790 11.790 11.790 11.790 11.790 

2 27.207 23.255 23.249 23.249 23.249 23.249 
3 69.963 42.869 42.367 42.367 42.367 42.367 

4 90.996 65.903 61.425 61.424 61.424 61.424 

5 141.99 99.288 89.930 89.872 89.872 89.872 

6 179.82 107.20 94.081 94.074 94.074 94.074 

7 316.22 176.96 124.55 124.20 124.20 124.20 

8 460.45 288.85 155.69 150.94 150.94 150.94 
9 641.06 329.22 182.56 179.06 179.06 179.06 

10 734.30 379.20 205.49 193.30 193.18 193.18 

Table 2 Nondimensionalized frequency parameter 2,i of circularly curved Timoshenko beam (clamped- 
clamped boundary condition) 

Rectangular cross section Circular cross section 
st 

e = 6 0  ° 6)=120" 6)=180 ° 69=60 ° 6)=120 ° 6)=180 ° 

10 

20 

50 

1 15.256 8.2796 3.6163 

2 24.251 8.7386 6.3265 

3 32.777 17.042 10.565 

4 42.655 17.175 10.923 

5 59.012 25.323 15.267 

1 23.713 10.574 4.1494 

2 38.646 15.156 8.5123 

3 62.919 24.629 15.399 

4 69.877 30.450 17.891 

5 102.08 38.935 25.410 

15.384 8.3526 3.6367 
24.546 8.7515 6.3571 

32.902 17.070 10.598 

43.344 17.354 10.976 

60.015 25.631 15.342 

23.772 10.612 4.1570 

38.988 15.182 8.5354 
62.958 24.716 15.455 

70.676 30.553 17.913 

103.41 39.076 25.513 

1 44.734 11.615 4.3443 44.746 11.623 4.3456 
2 50.177 22.091 9.4524 50.298 22.115 9.4576 

3 99.753 40.655 17.464 100.10 40.721 17.477 

4 144.71 45.162 26.202 145.11 45.179 26.229 

5 165.29 64.563 37.792 165.67 64.683 37.844 

100 

1 52.779 11.788 4.3743 

2 75.973 23.242 9.6014 

3 117.81 42.349 17.805 

4 170.79 61.389 27.207 

5 255.14 89.800 39.294 

52.815 11.790 4.3746 
76.004 23.249 9.6027 

117.87 42.367 17.809 

171.07 61.424 27.215 

255.69 89.872 39.308 

lrie et al. 

20 

1 23.70 12.57" 4.143 
2 38.73 15.17 8.519 
3 62.35 24.63 15.40 
4 69.97 30.38 17.90 

23.75 10.61 4.151 
39.05 15.19 8.542 
62.38 24.72 15.46 
70.71 30.47 17.91 

100 

1 52.78 11.79 4.374 
2 75.98 23.24 9.602 
3 117.8 42.35 17.81 

4 170.8 61.39 27.21 

52.82 11.79 4.374 
76.01 23.25 9.603 
117.9 42.37 18.81 
171.1 61.43 27.22 
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Nondimensionalized frequency parameter ,,t, of circularly curved Timoshenko beam (hinged-hinged 
boundary condition) 

I0 

20 

50 

Rectangular cross section Circular cross section 
st 

0 = 6 0  ° 0 = 1 2 0  ° 0 = 1 8 0  ° 0 = 6 0  ° (9=120 ° 0 = 1 8 0  ° 

1 11.529 5.7874 2.0726 
21.109 8.6120 5.6055 

3 32.471 [4.530 9.8142 
4 40.578 17.036 10.299 
5 57.480 23.319 14.372 

I 19.558 6.5803 2.2132 
2 28.570 14.382 6.5336 
3 60.074 20.932 12.801 
4 62.729 27.922 17.853 
5 94.486 36.542 22.149 

1 32.620 6.8676 2.2579 
2 44.197 17.033 6.8574 
3 76.981 32.708 13.771 
4 126.32 44.985 22.224 
5 158.72 55.287 32.830 

II.548 5.8117 2.0773 
21.288 8.6209 5.6267 
32.527 14.022 9.8229 
41.[14 17.062 10.350 
58.809 23.521 14.398 

19.564 6.5895 2.2146 
28.691 14.409 6.5425 
60.510 20.953 12.830 
62.750 28.023 17.874 
95.409 36.575 22.198 

32.650 6.8693 2.2582 
44.205 17.042 6.8591 
77.116 32.738 13.777 
126.69 45.006 22.238 
158.76 55.339 32.860 

I O0 

200 

1 33.365 6.9118 2.2645 33.373 6.9122 2.2646 
2 68.985 17.381 6.9067 69.0[3 17.384 6.9071 
3 101.50 33.500 13.925 101.51 33.508 13.927 
4 137.44 52.436 22.672 137.56 52.456 22.675 
5 214.73 77.336 33.650 215.02 77.377 33.658 

1 33.560 6.9230 2.2662 
2 73.994 17.468 6.9191 
3 140.51 33.705 [3.965 
4 183.64 53.236 22.783 
5 230.02 78.396 33.859 

33.562 6.9231 2.2662 
74.004 17.468 6.9[92 
140.55 33.707 13.965 
183.65 53.241 22.784 
230.01 78.406 33.861 

to 5 digits is achieved lbr  K = 1 5 ,  and  lowest  9 

e igenvalues  to 5 digits  for K = 2 0 .  Poisson 's  ra t io  

is 0.3 and  shear  cor rec t ion  factor tc lbr  the 

c i rcular  and  the rec tangu la r  cross sect ion are 

0.89 and 0.85, respectively, t h r o u g h o u t  the paper.  

The  numbers  given in Tab les  I - - - I  are the non-  

d imens iona l i zed  frequency paramete r s  ,41 defined 

as 

A, = ,/pAR4 w~/ E I (14) 

Eigenvalues  are compu ted  with K : 3 0  for vari-  

ous s lenderness  ra t ios  and curved beam angles 

O under  c l a m p e d - c l a m p e d ,  h inged  h inged  and 

c l a m p e d - h i n g e d  b o u n d a r y  condi t ions ,  and lowest 

5 e igenvalues  for each b o u n d a r y  cond i t i on  are 

listed in Tables  2 - -4 .  The  e igenvalues  computed  

by the t ransfer  matr ix  method  (Irie et al., 1983) 

are also given for the purpose  of  c o m p a r i s o n  in 

Tab le  2. The  e igenvalues  fbr s t = 1 0 0  in Tab le  2 

show excellent agreement  with those by the 

t ransfer  matr ix  method,  where  it was poin ted  out  

that  12.57" a m o n g  lr ie  et al. 's results must  be a 

typo for 10.57 (Kang  et al., 1995). 

4. Conclusions 

The Chebyshev  pseudospect ra l  method  is ap-  

plied to the analysis  of  i n - p l a n e  free v ib ra t ion  of  

curved T i m o s h e n k o  beams. The  pseudospect ra l  

fo rmula t ion  is s t ra igh t fo rward  and  efficient for 

wri t ing a code lbr  compu ta t i on .  Numer ica l  exam- 

ples are provided  for c i rcular ly  curved beams 

of  rec tangula r  and  c i rcu la r  cross sect ions under  

c l a m p e d - c l a m p e d ,  h i n g e d - h i n g e d  and  c l a m p e d -  

h inged b o u n d a r y  cond i t ions  for var ious  s lender-  

ness rat ios and  curved beam angles. The  results 
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Table 4 Nondimensionalized frequency parameter A,. of circularly curved Timoshenko beam (clamped h ~ged 
boundary condition) 

10 

20 

50 

100 

200 

Rectangular cross section Circular cross section 
st 

0 = 6 0  ° 0 = 1 2 0  ° 0 = 1 8 0  ° 0 = 6 0  ° 0 = 1 2 0  ° 0 = 1 8 0  ° 

I 13.161 6.9137 2.8228 

2 22.933 8.7247 6.0392 
3 32.600 15.872 9.9903 

4 41.594 17.042 10.809 

5 58.783 24.357 14.719 

I 20.931 8.4650 3.1287 

2 33.926 14.924 7.5533 

3 62.637 22.519 14.071 
4 65.263 29.532 17.884 

5 98.425 37.407 23.711 

1 39.927 9.0789 3.2329 

2 44.985 19.601 8.1313 
3 88.185 36.495 15.561 

4 137.02 45.126 24.222 

5 160.46 59.692 35.259 

l 42.333 9.1764 3.2486 

2 73.727 20.260 8.2209 

3 107.58 37.763 15.800 

4 153.98 56.993 24.903 

5 234.65 83.291 36.410 

I 42.789 9.2012 3.2526 
2 84.711 20.421 8.2436 

3 157.71 38.081 15.861 

4 183.74 58.327 25.069 
5 250.83 84.875 36.698 

13.224 6.956l 2.8342 

23.183 8.7388 6.0670 

32.684 16.003 10.012 

42.211 17.071 10.859 

59.803 24.614 14.766 

20.952 8.4860 3.1326 

34.152 14.952 7.5689 

62.680 22.568 14.113 

65.863 29.644 17.903 
99.557 37.481 23.786 

39.981 9.0830 3.2336 

45.006 19.617 8.1344 
88.415 36.541 15.570 

137.48 45.145 24.242 

160.58 59.776 35.300 

42.351 9.1775 3.2488 
73.760 20.264 8.2217 

107.62 37.776 15.802 
154.17 57.020 24.909 

235.06 83.346 36.421 

42.794 9.2015 3.2526 

84.728 20.422 8.2438 
157.76 38.084 15.861 

183.75 58.334 25.071 
250.94 84.890 36.701 

under  the c l amped -c l amped  boundary  condi t ion  

are compared  with the solut ions by the transfer 

matrix method and it is shown that they are in 

excellent agreement.  The title problem demon-  

strates the rapid convergence and accuracy as well 

as the conceptual  simplicity of  the pseudospectral  

method.  
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Appendix 

Calculation of Constants for Basis Function D~ 

1. The clamped-clamped boundary condition 
for the Timoshenko beam is given by 

u=0,  v=0,  Ik--0 at ~ = + 1  (AI) 

u = 0  and v = 0  at ~ = + 1  are satisfied by the 
condition given in Eq. (10), and the remaining 
condition Ik=0 at ~ =  + l  can be satisfied simply 
by choosing 

D2,-1 (8 )=Tz , ($ )  - To(~) 
Dan (~) = Tan+~ (~) - 7"1 ($) (A2) 

( n = l ,  2, ...) 

which makes ax=a2=aa=a4=O. 

2. The hinged-hinged boundary condition is 

u=0,  v=0,  M = 0  at ~ = -  1 
(A3) 

u=0 ,  v=0,  M = 0  at ~----1 

u = 0  and v = 0  at ~ = + l  are satisfied by the 
condition given in Eq. (10), and the remaining 
condition is 
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M I~:+a= E I  dVs ~=+~- 2 E I  d e  e=+_~=0 (A4) 
R dO _ R O  d~ 

Using the relationship (8), it is worthwhile to 
note that 

dDk ~=+=0 ( k = l ,  2, "", K)  (A5) 
d~ _ 

is a sufficient condition for the zero-moment 
condition (A4). Having the differentiation of the 
odd numbered terms of Dh(~) with respect to 
equal to zero makes 

dD2n-,.d~ .=_+l=( dd--~-W2a~Waz) .=+_,=0 (A6) 

(n=l ,  z...-) 

Eq. (A6) is rewritten as 

{ --4n2--2a~+az=O at ~ = - - 1  
(A7) 

4nZ+2al+az=O at ~ = 1  

and we have 

a t = - - 2 n  z, a2=0  (A8) 

The differentiation of the even numbered terms 
with respect to ~: makes 

dD2,d~ , : + , :  ( _  dT2,+ld~ I + 2as~e+ a,) ,:±, : 0  (A9) 

Eq. (A9) is also rewritten as 

{ ( 2 n + l ) 2 - - 1 - - 2 a 3 + a 4 = O  at ~ = - - 1  
( 2 n + l ) Z - - l + 2 a 3 + a 4 = 0  at ~=1  (AI0) 

from which the constants and as are a4 found to 
be 

as=0 ,  a 4 = - - 4 n ( n +  l) (All) 

3. The clamped-hinged boundary condition is 
given by 

{u =0,  v=0 ,  1~=0 at ~ = - - I  
u = 0 ,  v=0 ,  M = 0  at ~=1  (AI2) 

u = 0  and v = 0  at ~ : = + 1  are satisfied by the 
condition given in Eq. (10), and the remaining 
condition is satisfied by the introduction 

D k = 0  at ~ = - -  1 

~ = 0  at ~ = 1  
(AI3) 

Using the relationships of Eq. (11), the condition 
for the odd numbered terms is given by 

{ ~.-~l~=-~= (Tz~- To+aj~Z+az~)L.=-I= a~- az=0 
dT2. ~ ~ 2 

from which we have 

4n z 
(AlS/ al = a2---- 3 

For the even numbered terms 

/~,1~=-~ = '.T2,.~- T~+a3~2+a,e,.~ I~=-t=a3-a~=0 

from which we have 

4 n ( n + l )  
a3=a4 - (AI7) 

3 




