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In-Plane Free Vibration Analysis of Curved Timoshenko
Beams by the Pseudospectral Method

Jinhee Lee*
Department of Mechano-Informatics, Hongik University,
Chochiwon, Yeonki-kun, Choongnam 339-701, Korea

The pseudospectral method is applied to the analysis of in-plane free vibration of circularly

curved Timoshenko beams. The analysis is based on the Chebyshev polynomials and the basis

functions are chosen to satisfy the boundary conditions. Natural frequencies are calculated for

curved beams of rectangular and circular cross sections under hinged-hinged, clamped-clamped

and hinged-clamped end conditions and the results are compared with those by transfer matrix

method. The present method gives good accuracy with only a limited number of collocation

points.
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Nomenclature ———— - ——— —~

A . Cross sectional area of the beam

By, Cr, D, ! Basis functions

bs. Cr, dr : Pseudospectral coefficients

FE . Young's modulus

G . Shear modulus

1 : Second moment of area

M. N. @ : Stress resultants

R > Radius of curvature of the curved
beam

St . Slenderness ratio

T . Chebyshev polynomial of the first
kind

U, u . Axial displacement

V.w . Transverse displacement

K  Shear coefficient

o . Density of the beam

® . Angle of the curved beam

v oy . Bending rotation

w . Natural frequency in [rad/sec]
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1. Introduction

Curved beams are frequently used in many
practical applications. Because of their impor-
tance the free vibration analysis of curved beams
has been extensively studied and new methods
have been proposed as can be found in the review
articles (Markus and Nanasi, 1981 ; Laura and
Maurizi, 1987 ; Chidamparam and Leissa, 1993).
Although there exists a vast amount of research
on the free vibration analysis of curved beams,
most of the work has been done on the basis of
the Bernoulli-Euler beam theory. Real beams
may have appreciable thickness where the shear
deformation and the rotary inertia are not negli-
gible as assumed in the classical beam theory. As
a result the Timoshenko beam model has gained
more popularity.

Free vibration analysis of curved beams based
on the Timoshenko theory has been carried out
using various methods such as the transfer matrix
method (Bickford and Strom, 1975 ; Irie et al..
1982 : Irie et al., 1983 ; Yildirim, 1997). the dy-
namic stittness method (lssa et al., 1987 ;: Howson
et al., 1995: Tseng et al.. 1997 Howson and
Jemah, 1999). the differential quadrature method
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(Kang et al., 1995) and the finite element method
(Davis et al. 1972; Prathap and Babu, 1986
Heppler, 1992 : Lee and Sin, 1994 ; Yang and Sin,
1995). In this study a free vibration analysis for
the in-plane mode of curved Timoshenko beams
using the pseudospectral method is presented. The
pseudospectral method can be considered as a
spectral method that performs a collocation pro-
cess. which can be made as spatially accurate as
desired through exponential rate of convergence
with mesh refinement.

The pseudospectral method, however, remains
largely unnoticed by the structural analysis com-
munity and the application of the pseudospectral
method to the vibration analysis is scarce. The
pseudospectral method was applied to the free
vibration analyses of axisymmetric Mindlin plate
(Soni and Amba-Rao, 1975) and axisymmetric
annular Mindlin plate (Gupta and Lal. 1985).
The collocation method along with the power
series representation was also used in the eigen-
value analysis of rectangular Mindlin plates
(Mikami and Yoshimura, 1984). Recently, the
pseudospectral method was applied to the eigen-
value problems of straight Timoshenko beams
(Lee and
Schultz) and rectangular Mindlin plates (Lee,
2003).

and axisymmetric Mindlin plates

2. Pseudospectral Formulations

Fig. 1 depicts the geometric configuration of
the title problem and the dependent variables.
The slenderness ratio s; of the curved beam is
defined by

Sz==¢;i)?€7i (1)

Fig. 2 shows the schematics of stress resultants.
The equations of motion for the in-plane modes
are given as follows
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Fig. 1 Geometry of curved beam and generalized

displacements
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Fig. 2 Stress resultants acting on an infinitesimal
element

The stress resultants M, N and @ in (2] are
defined by
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Assuming the simple harmonic motions in time

Ul, t)=u(8)cos wt
V8, t)=uv(8)cos wt (4)
(g, t)=y () cos wt

the substitution of (3) into (2) yields
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When the range of the independent variable is
given by (0<4<@) it is convenient to use the
normalized variable

. 20—0
70

el—1,1] (6)

and (5) can be rewritten as

4EA . KAG  UEA-+AG) 4 KAG

T 7o ‘TR y=-d'oAu

UEA+ ; 2 .

;E‘}?ZgAG) W+ 413%("; ¢ %} - K/%,)G ¥'=~d'oAu (7)
LAG u+ )KAG ; 4Elz ¢.7_KAG¢=_‘U201¢,

F “TRe ¢ R2@2

where * stands for the differentiation with respect
to £. The series expansions of the exact solutions
u(€), v(€) and ¥ (&) have infinite numbers of
terms. In this study, however, the dependent
variables are approximated by the K-th partial

sums as follows:
Cka(E (8)

The end conditions considered in this study are
clamped-clamped, hinged-hinged, and clamped-
hinged boundary conditions. The boundary con-
ditions for the in-plane mode are given by

L u=0.v=0, M=0

{ hinged support
u=0, v=0, y=0

clamped support :

(9)

The basis functions

BZn—l(E) :C?.n—l($> = En(é) - 72)(5)
BZn\E):CZn($)=7‘2n+1(E)*ﬂ(é) (10)
(n=1, 2, )

satisfy the boundary conditions # =0 and =0 at
£==1. The basis function D, (&)
satisfy either ¥ =0 or ¥"=0 at the ends, and it is
assumed

is required to

Din-i(£) =
D (&) =

Tonar (&) —
(n=1,2, )

-7 5>+a152+6125
T (&) +asf+ag (1)
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The calculation of constants @i, @z as and a4
that satisfy each of clamped-clamped (¥ =0 at
£==1), hinged-hinged (¥'=0 at £==1), and
clamped-hinged (¢y=0 at £=—1 and ¥'=0 at
£=1) boundary conditions is given in APPEN-
DIX. By substituting (8) into (7) and by setting
the residuals equal to zero at the collocation
points

_ 2i—Dx
&:=—cos R . K) (12)
the pseudospectral algebraic system of equations
for the in-plane mode is given by

2 b B - g -0 A

+ab 2L D) =~ B
g:b.%&(&%a{ 4"A@§ Gt ij} i

-0 D) =i oA, (13
284 piga 2 g
+d,{;f—énx'5,:—mcp.(5 - i oLdDeis:

=l K

The total number of pseudospectral coefficients
b -, bK. C1, ' Ck, a’;. AN dK is 3K, which
matches the total number of equations in (13),
and (13) is solved for the eigenvalues of the in-
plane modes.

3. Numerical Examples

A preliminary test is run to check the conver-
gence of the pseudospectral method applied to
the in-plane free vibration analysis of curved
Timoshenko beams. The eigenvalues of circular-
ly curved beam of circular cross section with
clamped-clamped boundary condition for the
slenderness ratio s,= 100 are computed for differ-
ent collocation number K, and the computed
results are listed in Table I. This shows the rapid
convergence nature of the pseudospectral method
such that the convergence of lowest 4 eigenvalues
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Table 1 Convergence test of nondimensinalized frequency parameters A; {s,=100, ®=120, circular cross
section, clamped-clamped boundary condition)

Vibration K=1 K=10 K=15 K=20 K=15 K=30
mode

1 11910 11.790 11.790 11.790 11.790 11.790

2 27.207 23.255 23.249 23.249 23.249 23.249

3 69.963 42.869 42.367 42.367 42.367 42.367

4 90.996 65.903 61.425 61.424 61.424 61.424

5 141.99 99.288 89.930 89.872 89.872 89.872

6 179.82 107.20 94.081 94.074 94.074 94.074

7 316.22 176.96 124.55 124,20 124.20 124.20

8 460.45 288.85 155.69 150.94 150.94 150.94

9 641.06 329.22 182.56 179.06 179.06 179.06

10 734.30 379.20 205.49 193.30 193.18 193.18
Table 2 Nondimensionalized frequency parameter A; of circularly curved Timoshenko beam (clamped-

clamped boundary condition)

Rectangular cross section

Circular cross section

St

©=60° e=120° @=180° @=60° e=120° 6=180°
1 15.256 8.2796 3.6163 15.384 8.3526 3.6367
2 24.251 8.7386 6.3265 24.546 8.7515 6.3571
10 3 32.777 17.042 10.565 32.902 17.070 10.598
4 42.655 17.175 10.923 43.344 17.354 10.976
5 59.012 25.323 15.267 60.015 25.631 15.342
1 23.713 10.574 4.1494 23.772 10.612 4.1570
2 38.646 15.156 8.5123 38.988 15.182 8.5354
20 3 62.919 24.629 15.399 62.958 24.716 15.455
4 69.877 30.450 17.891 70.676 30.553 17.913
5 102.08 38.935 25.410 103.41 39.076 25.513
1 44.734 11.615 4.3443 44.746 11.623 4.3456
2 50.177 22.091 9.4524 50.298 22,115 9.4576
50 3 99.753 40.655 17.464 100.10 40.721 17.477
4 144.71 45.162 26.202 145.11 45.179 26.229
5 165.29 64.563 37.792 165.67 64.683 37.844
1 52.779 11.788 4.3743 52.815 11.790 4.3746
2 75.973 23.242 9.6014 76.004 23.249 9.6027
100 3 117.81 42.349 17.805 117.87 42.367 17.809
4 170.79 61.389 27.207 171.07 61.424 27.215
S 255.14 89.800 39.294 255.69 89.872 39.308
Irie et al.
1 23.70 12.57* 4.143 23.75 10.61 4.151
50 2 38.73 15.17 8.519 39.05 15.19 8.542
3 62.35 24.63 15.40 62.38 24.72 15.46
4 69.97 30.38 17.90 70.71 3047 17.91
| 52.78 11.79 4.374 52.82 11.79 4.374
100 2 75.98 23.24 9.602 76.01 23.25 9.603
3 117.8 42.35 17.81 117.9 42.37 18.81
4 170.8 61.39 27.21 171.1 61.43 27.22
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Table 3 Nondimenstonalized frequency parameter A; of circularly curved Timoshenko beam (hinged-hinged

boundary condition)

Rectangular cross section Circular cross section
. 6&=060° G=120° O=180° O=60° G=120° ©@=180°

1 11.529 5.7874 2.0726 11.548 58117 2.0773

2 21.109 8.6120 5.6055 21.288 8.6209 5.6267

10 3 32.471 14.530 9.8142 32,527 14.622 9.8229
4 40.578 17.036 10.299 41.114 17.062 10.350

S 57.480 23319 14.372 58.809 23.521 14.398

1 19.558 6.5803 22132 19.564 6.5895 2.2146

2 28.570 14.382 6.5336 28.691 14.409 6.5425

20 3 60.074 20932 12.801 60.510 20.953 12.830
4 62.729 27922 17.853 62.750 28.023 17.874

3 94.486 36.542 22,149 95.409 36.575 22.198

1 32.620 6.8676 2.2579 32.650 6.8693 2.2582

2 44,197 17.033 6.8574 44.205 17.042 6.8591

50 3 76.981 32.708 13.771 77.116 32.738 13.777
4 126.32 44.985 22.224 126.69 45.006 22.238

5 158.72 55.287 32.830 158.76 35.339 32.860

1 33.365 69118 2.2645 33.373 6.9122 2.2646

2 68.985 17.381 6.9067 69.013 17.384 6.9071

100 3 101.50 33.500 13.925 101.51 33.508 13.927
4 137.44 52.436 22,672 137.56 52.456 22.675

5 214.73 77.336 33.650 215.02 77.377 33.658

1 33.560 6.9230 2.2662 33.562 6.923] 2.2662

2 73.994 17.468 6.9191 74.004 17.468 6.9192

200 3 140.51 33.705 13.965 140.55 33.707 13.965
4 183.64 53.236 22.783 183.65 53.241 22.784

5 230.02 78.396 33.859 230.01 78.406 33.861

to 5 digits is achieved for K=15, and lowest 9
eigenvalues to 5 digits for K=20. Poisson’s ratio
v is 0.3 and shear correction factor g for the
circular and the rectangular cross section are
0.89 and 0.85, respectively, throughout the paper.
The numbers given in Tables 1~ 4 are the non-
dimensionalized frequency parameters A; defined

as

A=VoAR'GY/EI (14)

Eigenvalues are computed with K=30 for vari-
ous slenderness ratios and curved beam angles
@ under clamped-clamped. hinged-hinged and
clamped-hinged boundary conditions, and lowest
5 eigenvalues for each boundary condition are
listed in Tables 2~4. The eigenvalues computed
by the transfer matrix method (Irie et al., 1983)
are also given for the purpose of comparison in

Table 2. The eigenvalues for s,=100 in Table 2
show excellent agreement with those by the
transfer matrix method. where it was pointed out
that 12.57* among Irie et al.’s results must be a
typo for 10.57 (Kang et al., 1995).

4. Conclusions

The Chebyshev pseudospectral method is ap-
plied to the analysis of in-plane free vibration of
curved Timoshenko beams. The pseudospectral
formulation is straightforward and efficient for
writing a code for computation. Numerical exam-
ples are provided for circularly curved beams
of rectangular and circular cross sections under
clamped-clamped, hinged-hinged and clamped-
hinged boundary conditions for various slender-
ness ratios and curved beam angles. The results
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Table 4 Nondimensionalized frequency parameter A; of circularly curved Timoshenko beam (clamped-hinged

boundary condition)

Rectangular cross section Circular cross section
. G=60° @=120° ©=180° @=060° @=120° &=180°
| 13.161 6.9137 2.8228 13.224 6.9561 2.8342
2 22933 8.7247 6.0392 23.183 8.7388 6.0670
10 3 32.600 15.872 9.9903 32.0684 16.003 10.012
4 41.594 17.042 10.809 42.211 17.071 10.859
S 58.783 24.357 14.719 59.803 24614 14.766
1 20931 8.4650 31287 20.952 8.4860 3.1326
2 33.926 14.924 7.5533 34.152 14.952 7.5689
20 3 62.637 22.519 14.071 62.680 22.568 14.113
4 65.263 29.532 17.884 65.863 29.644 17.903
5 98.425 37.407 2371 99.557 37.481 23.786
1 39.927 9.0789 32329 39.981 9.0830 3.2336
2 44.985 19.601 8.1313 45.006 19.617 8.1344
50 3 88.185 36.495 15.561 88.415 36.541 15.570
4 137.02 45.126 24.222 137.48 45.145 24.242
5 160.46 59.692 35.259 160.58 59.776 35.300
1 42.333 9.1764 3.2486 42.351 9.1775 3.2488
2 73.727 20.260 8.2209 73.760 20.264 82217
100 3 107.58 37.763 15.800 107.62 37.776 15.802
4 153.98 56.993 24903 154.17 57.020 24.909
5 234.65 §3.291 36.410 235.00 83.346 36.421
! 42.789 9.2012 3.2526 42.794 9.2015 3.2526
2 84.711 20421 8.2436 84.728 20.422 8.2438
200 3 157.71 38.081 15.861 157.76 38.084 15.861
4 183.74 58.327 25.069 183.75 58.334 25.071
5 250.83 84.875 36.698 250.94 84.890 36.701

under the clamped-clamped boundary condition
are compared with the solutions by the transfer
matrix method and it is shown that they are in
excellent agreement. The title problem demon-
strates the rapid convergence and accuracy as well
as the conceptual simplicity of the pseudospectral
method.
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Appendix

Calculation of Constants for Basis Function D,
(&)

1. The clamped-clamped boundary condition
for the Timoshenko beam is given by

u=0, v=0, y=0 at £==1 (Al)

u=0 and v=0 at £=21 are satisfied by the
condition given in Eq. (10), and the remaining
condition =0 at £==1 can be satisfied simply
by choosing

Din-1(8) =Toa (&) — To (&)
D?.n(é) :nn+l(5) - ﬂ(é)
(ﬂ=l, 2’ )

(A2)

which makes a1=a,=a3;=a,=0.
2. The hinged-hinged boundary condition is

{u=0, v=0, M=0 at £=—1 (A3)

u=0, v=0, M=0 at £=1

=0 and v=0 at £==%1 are satisfied by the
condition given in Eq. (10), and the remaining
condition is
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El dy _2EI dy

Mle-21="%" 44 |¢-ss™ RO dE lees O AY
Using the relationship (8), it is worthwhile to
note that

dDx _ .

- (k=1,2, -, K) (AS)

is a sufficient condition for the zero-moment
condition (A4). Having the differentiation of the
odd numbered terms of Dx(&) with respect to &
equal to zero makes

dlc);fn—1|5=¢1:( da?én +2alé+a2> e=:1=0 (A6)
(7’1:1, 2, )
Eq. (A6) is rewritten as
42— —0 ar Fm— —
{4n42:l—2a:j-ljz;iz0 :tcgjl | (A7)
and we have
a=—2n% @=0 (A8)

The differentiation of the even numbered terms
with respect to & makes

dDZn . < dT2n+l
dé dé

Eq. (A9) is also rewritten as
{ (2n+1)2—1—2as+a=0 at £=—1
Cu+1)2—14+2a3+a,;=0 at £=1

from which the constants and a3 are a4 found to
be

—l+2a3$+a4)

=0(A9)
£=11

§=1%1

(A10)

23=0, a,=—4n(n+1) (ALl
3. The clamped-hinged boundary condition is
given by

=0, =0, =0 at E=—1
{u v v at & (A12)

u=0, v=0, M=0 at £=1
u=0 and v=0 at £=21 are satisfied by the
condition given in Eq. (10), and the remaining
condition is satisfied by the introduction

D,=0 at £=—1|
dDe __, | _ (A13)
dJE =0 at £=1

Using the relationships of Eq. (11}, the condition
for the odd numbered terms is given by

Donctlee-i={ Ton— To 84 @6 s =1~ 02=0

d%g" £=l=( d£n+za,5+a2) St =0 (A14)
from which we have
a1:(12:_4Tnz (A15)
For the even numbered terms
D= = T 40 =m0
d‘% LI:(%_IH“JE‘& L:I=72n+l‘z—l+3a3+a4=0 (Al6)
from which we have
a3=a4=_4n(nf+l) (A17)





